Email:hhcasting@126.com

Contact Us

Manager:Franck

Mobile: +86-13665102324

Email: hhcasting@126.com

Skype: hoohi123

Tel: +86-510-85737583

Japanese Market:Tong san

Mobile: +86-13814297500

Email: 13814297500@163.com

Professional Custom Die Casting Iron Ductile Cast Iron Casting

FAQ: Q 1.Why should we send inquiry to you? We are professional one-stop customized mechnical parts and service provider.We have the word-class foundry equipment and technology processing.We had 5 years of castings experience in exporting. We can bespoke manufacture of drawing,samples...

Material

Stainless Steel, Steel, Ductile Iron, Grey Iron, Aluminum, Bronze, Copper, Brass, and customized material from clients.

Material Grade

ASTM, DIN, GB, BS, JIS, AISI, NF, etc

Process

Sand Casting, ESR casting, Die Casting, Investment casting

Weight

0.01kg- 150kg

Tolerance

CT 4-9 grade, and based on the custom drawings

Drawing (files) format

Igs, Stp, X-T PDF, Jepg, Jpg

Capabilities of Production

Aluminum: More than 80 Mt per month.

Stainless Steel: More than 200 Mt per month.


Surface Treatment

Anodize/Zinc Plating/ Nickel Plating, Tinting/ Polishing/Blacking, etc

MOQ

Depends on the items, please contact us for free

Heat Treatment

Quenching, Normalizing, Annealing, Plating,Carburizing

Applications

Automotive, Agricultural Machines, vessels, Tooling, Mining, Oil & gas industry, Locomotive industry, Aerospace, Hardware, Construction, Engineering Machine, Electrical Equipment, etc

Machining Equipment

Threading, Turning, Milling, Grinding, CNC/NC, Boring, Test facilities

Measuring Tools

Gauge, Thread gauge, Height Gauge, Vernier caliper, Depth caliper, Micrometer, CMM, etc

QC System

Fully inspection before Delivery

Available Service

OEM & ISO

Payment Terms

L/C, D/A, D/A,T/T, PayPal

Shipment Terms

FOB, CIF

Samples

Few Samples are acceptable

Certification

IS9001:2008.

Tooling leadtime

10-15 working days

Production leadtime

15 working days, based on the quantity of demand

FAQ:

Q 1.Why should we send inquiry to you?

We are professional one-stop customized mechnical parts and service provider.We have the word-class foundry equipment and technology processing.We had 5 years of castings experience in exporting.

We can bespoke manufacture of drawing,samples mapping,raw material processing and design manufacture according to your originality.

Q 2.How long can we get the price list?

We are factory direct best price.So our price list will be quoted within 24 hours after we get your inquiry with detailed informations (such as drawings, material,technology specification,surface treatment,quantity, special requirements and etc)

Q 3.How about quality of your castings parts?

After you confirmed the quotation for pattern cost,raw casting cost,machining cost and coating cost.We will send to you the sample for you inspection approval.

Q 4.How about your after market service?

We could confidential of the quality of delivered parts and compensate 100% on defective parts.

Q 5.What`s your Minimun Order Quantity(MOQ)

According to your requirement that only one piece can customized for you.

Our advantages:

1: Globally acceptable quality: The products offered by us are thoroughly examined by our experienced professionals to ensure their durability, reliability and long service life.

2:Competitive price: direct manufacturer, reducing all unnecessary cost for you.

3:Professional team:5 years foreign customers service experience. Over 10 years investment casting manufacture. Almost 35% high educated people.

Hoohi is able to work with most of the 2D and 3D software, like Auto CAD, SolidWorks, Pro/Engineer, UG and others. Our engineers are ready to help customers with any technical issues.

We could use software Magma that be able to improve our casting quality.

The product are exported to US, Japan, UK, Canada, Netherland, Germany, etc .The professional team with rich practical experience will help you optimizing the whole solution for you from casting designing, casting processing to machining, heat treatment, surface treatment and so on, lower total processing cost a or achieve value-added products, help you to improve market competitiveness and obtain maximize profits.  

Any question, please feel free to contact us. We look forward to establishing long-term cooperation with you!

 The Details of Ductile Iron

Cast iron is generally thought of as a weak, dirty, cheap, brittle material that does not have a place in applications requiring high strength and defined engineering properties. While gray cast iron is relatively brittle by comparison with steel, ductile iron is not. In fact, ductile iron has strengths and toughness very similar to steel, and the machinability advantages make an attractive opportunity for significant cost reductions. Gray and ductile iron bar stock is commercially available and can be used as a direct replacement in gear and other applications using carbon steel bar.

 Automotive gears, for example, are being converted to ductile iron for its damping capacity and cost reductions. Ductile iron bar stock conversions are also prevalent in many fluid power applications, including glands and rod guides, cylinders, hydrostatic transmission barrels, and in high-pressure manifolds. Both gray and ductile iron has been used for years in the machine tool industry because of their performance in sliding wear applications and vibration damping.

 Understanding the metallurgical concepts of ductile iron is the key to understanding its potential use as an engineered metal and allows the design engineer to determine its suitability in specific applications and to intelligently select the best grade. Recent developments in understanding the variables that influence the machinability of gray and ductile iron grades have allowed the process engineer to quantify the expected cost savings whenconverting from carbon steel bars to continuously cast gray and ductile iron.

The following material includes a background on the development of continuous casting of gray and ductile iron, definitions of ductile irons, the metallurgical characteristics of the engineered grades, and some basic material properties. An update on recent studies in the machining characteristics of ductile iron is also presented. 

Introduction

The process of selecting the best material to be used for any application involves two primary concerns: is the part most likely to break, or will it most likely wear out? Parts that do not break or wear out, theoretically, could last forever. Using that logic, it would make sense that whenever a design engineer specifies a material for any application, the strongest, most wear-resistant material should always be used. Naturally, this is not practical because of the cost to obtain the material, and the cost to machine or otherwise fabricate the material into a useable part.

In very general terms, strength and wear resistance is inversely proportional to machinability, and it can be concluded that as strength and wear resistance increase, the cost of machining increases. Because of this concern, it is extremely important that a designer know as much as possible about all the materials that are available so that the one having the best combination of engineering and machining properties can be selected.

Ductile iron was invented somewhat by accident when a metallurgist was trying to find a replacement for chrome in wear-resistant gray iron castings. Magnesium was used in one of the experiments, and it was discovered that what were normally flake graphite shapes were now spheroidal. Castings made with spheroidal rather than flake graphite had high strength and ductility, good fatigue life, and impact properties. Other properties such as vibration damping, machinability, and wear resistance have made ductile iron a suitable replacement for steel in gears and a number of other applications. Table 1

Ductile Iron Defined

Iron is a ferrous alloy consisting primarily of iron with carbon, silicon, manganese, and sulfur. Other elements are also present and controlled to produce the various grades and to influence other mechanical properties, machinability, and castability. Carbon is added to iron in amounts that exceed the solubility limit, and during solidification, graphite precipitates into tiny spheres. Silicon and other alloys are used to control the morphology of the precipitated graphite and to control the amount of carbon that remains as a solid solution in the iron.Steel, by comparison, contains carbon in amounts that are completely soluble in iron; therefore, precipitated graphite nodules do not exist, and the entire structure consists of a metal matrix.

As more carbon is added to steel, strength and wear resistance increase, and machinability decreases. Low carbo steels such as 1018 and 1117 contain less than 0.20 percent carbon and have tensile strengths of approximately 67ksi. The higher strength grades such as 1040 and 1141 contain 0.40 percent carbon and will have tensile strengths on the order of 90 ksi. Machinability decreases as strength increases, and by comparison with 1212 steel, 1117 has a rating of 91 percent and 1141 has a rating of 81 percent (source: ASM Handbook).

In the case of ductile iron, the amount of carbon that remains in solid solution depends on the rate of solidification and cooling, on the inoculation practice, and on other elements that are added to either promote graphitization or to promote the formation of pearlite. Similar to steel, ductile irons with less carbon in the matrix (low-combined carbon) will be lower in strength, higher in ductility, and will have better machinability than ductileiron with high amounts of combined carbon.

It is possible to produce the different grades of ductile iron by controlling the process variables to precipitate the desired amount of graphite particles and obtain the desired amount of combined carbon remaining in the matrix. Steel grades are designated primarily by chemical composition, and the composition determines the mechanical properties. Ductile iron grades cannot be distinguished by chemistry because the properties are influenced by the graphite morphology and by the composition of the matrix, which is strongly influenced by other variables. The ductile grades are typically designated under ASTM A536 in the form of xx-xx-xx, representing the tensile and yield strength in ksi and the percent of elongation. As with steel, increased tensile and yield strength results from a higher amount of dissolved carbon in the matrix, creating a higher ratio of pearlite to ferrite. Higher strength results in decreased elongation, increased hardness and wear, and decreased machinability. The photomicrographs in Figure 1 show the pearlite to ferrite ratios in three ductile iron grades at 100X magnification. As the percentage of pearlite (etched dark) increases, strength increases. The graphite nodules are also visible as round spheres, and the nodularity in each of the photos is similar.

The mechanical property requirements for each of the ductile iron grades listed in ASTM A536 are minimum values obtained from a separately cast test coupon. They can be used for design purposes as long as the data has been generated that correlates the strength in the casting to the strength in a separately-cast test coupon. Tensile test specimens are easily obtained from continuously cast ductile iron, and the mechanical properties in parts machined from bar stock directly correspond to the properties in ASTM A536.

Selecting the best grade of ductile iron for any application involves the same consideration as selecting the best grade of steel or other metals, determining the property requirements and finding materials that meet them. Ductile iron can be a suitable replacement for most of the plain carbon steels because the mechanical propertiesare similar with similar matrix structures. The primary advantage in making conversions from steel bar stock toductile iron bar stock is lower processing cost through improved machinability.

Ductile Iron Advantages

Since its development in the mid-1940s, ductile iron casting production has grown dramatically. Ductile iron has engineering properties similar to steel, and near-net shaped castings are replacing forgings, weldments, and steel castings in a variety of applications. Ductile iron is also available in continuously cast bar stock and can be a direct replacement for carbon steel bars in anumber of gears in the automotive, hydraulic, machine tool, and other industries.

Machinabilty advantages of continuously cast ductile iron bars over carbon steel bars are the primary reason forits growth during the past 40 years. Improved tool life and faster cycle times mean more parts produced per hour and less cost for consumable items such as machine tool inserts. Ductile iron contains precipitated graphite nodules acting as natural chip-breakers, causing less friction of the chip on the insert and allowing for a larger depth of cut because of the reduced forces required during machining.

The presence of graphite nodules offers additional benefits. Noise and vibration is reduced because of the damping properties of graphite--a key consideration in gear applications--and wear resistance is also improved. Ductile iron is less dense than steel, and the same parts made from ductile iron will weigh 10 percent less than if they were made of steel.


Related Products
Home | About Us | Products | News | Exhibition | Contact Us | Feedback | Mobile | XML
Copyright © Wuxi Hoohi Engineering Co.,Ltd All Rights Reserved.
  • facebook
  • twitter
  • Youtube
  • gmail
  • skype

Wuxi Hoohi Engineering Co.,Ltd